The Geometry of Lattice Cryptography

نویسنده

  • Daniele Micciancio
چکیده

Lattice cryptography is one of the hottest and fastest moving areas in mathematical cryptography today. Interest in lattice cryptography is due to several concurring factors. On the theoretical side, lattice cryptography is supported by strong worst-case/average-case security guarantees. On the practical side, lattice cryptography has been shown to be very versatile, leading to an unprecedented variety of applications, from simple (and efficient) hash functions, to complex and powerful public key cryptographic primitives, culminating with the celebrated recent development of fully homomorphic encryption. Still, one important feature of lattice cryptography is simplicity: most cryptographic operations can be implemented using basic arithmetic on small numbers, and many cryptographic constructions hide an intuitive and appealing geometric interpretation in terms of point lattices. So, unlike other areas of mathematical cryptology even a novice can acquire, with modest effort, a good understanding of not only the potential applications, but also the underlying mathematics of lattice cryptography. In these notes, we give an introduction to the mathematical theory of lattices, describe the main tools and techniques used in lattice cryptography, and present an overview of the wide range of cryptographic applications. This material should be accessible to anybody with a minimal background in linear algebra and some familiarity with the computational framework of modern cryptography, but no prior knowledge about point lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

QTRU: quaternionic version of the NTRU public-key cryptosystems

In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...

متن کامل

On the design and security of a lattice-based threshold secret sharing scheme

In this paper, we introduce a method of threshold secret sharing scheme (TSSS) in which secret reconstruction is based on Babai's nearest plane algorithm. In order to supply secure public channels for transmitting shares to parties, we need to ensure that there are no quantum threats to these channels. A solution to this problem can be utilization of lattice-based cryptosystems for these channe...

متن کامل

A New Ring-Based SPHF and PAKE Protocol On Ideal Lattices

emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...

متن کامل

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...

متن کامل

COMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS

The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011